cs.AI updates on arXiv.org 10月08日 12:06
基于跨语言数据集的早期网络迷因流行度预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了利用大规模跨语言数据集对复杂、快速演变的网络迷因进行早期流行度预测的可行性。提出了一种基于混合参与度分数的数据驱动方法,并在不同时间窗口内评估了多种模型,发现XGBoost模型在30分钟内即可实现较高的预测准确率。

arXiv:2510.05761v1 Announce Type: new Abstract: Predicting the virality of online content remains challenging, especially for culturally complex, fast-evolving memes. This study investigates the feasibility of early prediction of meme virality using a large-scale, cross-lingual dataset from 25 diverse Reddit communities. We propose a robust, data-driven method to define virality based on a hybrid engagement score, learning a percentile-based threshold from a chronologically held-out training set to prevent data leakage. We evaluated a suite of models, including Logistic Regression, XGBoost, and a Multi-layer Perceptron (MLP), with a comprehensive, multimodal feature set across increasing time windows (30-420 min). Crucially, useful signals emerge quickly: our best-performing model, XGBoost, achieves a PR-AUC $>$ 0.52 in just 30 minutes. Our analysis reveals a clear "evidentiary transition," in which the importance of the feature dynamically shifts from the static context to the temporal dynamics as a meme gains traction. This work establishes a robust, interpretable, and practical benchmark for early virality prediction in scenarios where full diffusion cascade data is unavailable, contributing a novel cross-lingual dataset and a methodologically sound definition of virality. To our knowledge, this study is the first to combine time series data with static content and network features to predict early meme virality.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

网络迷因 流行度预测 跨语言数据集 XGBoost 数据驱动
相关文章