cs.AI updates on arXiv.org 10月08日
台灣空氣污染與氣候預測模型研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文對台灣嚴重的空氣污染進行研究,並比較了21種預測排放的時間序列模型,其中Feedforward Neural Network (FFNN)、Support Vector Machine (SVM)和Random Forest Regressor (RFR)表現最佳,並通過自定義堆疊泛化技術整合,達到1.407的SMAPE準確度,為政策制定提供數據支持。

arXiv:2510.05548v1 Announce Type: new Abstract: Taiwan's high population and heavy dependence on fossil fuels have led to severe air pollution, with the most prevalent greenhouse gas being carbon dioxide (CO2). There-fore, this study presents a reproducible and comprehensive case study comparing 21 of the most commonly employed time series models in forecasting emissions, analyzing both univariate and multivariate approaches. Among these, Feedforward Neural Network (FFNN), Support Vector Machine (SVM), and Random Forest Regressor (RFR) achieved the best performances. To further enhance robustness, the top performers were integrated with Linear Regression through a custom stacked generalization en-semble technique. Our proposed ensemble model achieved an SMAPE of 1.407 with no signs of overfitting. Finally, this research provides an accurate decade-long emission projection that will assist policymakers in making more data-driven decisions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

台灣空氣污染 氣候預測模型 時間序列模型 排放預測 政策制定
相关文章