cs.AI updates on arXiv.org 10月08日
VAL-Bench:评估LLM价值一致性新基准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出VAL-Bench,通过评估大型语言模型在争议性问题上的价值立场一致性,以揭示其与人类价值观的契合度。

arXiv:2510.05465v1 Announce Type: new Abstract: Large language models (LLMs) are increasingly used for tasks where outputs shape human decisions, so it is critical to test whether their responses reflect consistent human values. Existing benchmarks mostly track refusals or predefined safety violations, but these only check rule compliance and do not reveal whether a model upholds a coherent value system when facing controversial real-world issues. We introduce the \textbf{V}alue \textbf{AL}ignment \textbf{Bench}mark (\textbf{VAL-Bench}), which evaluates whether models maintain a stable value stance across paired prompts that frame opposing sides of public debates. VAL-Bench consists of 115K such pairs from Wikipedia's controversial sections. A well-aligned model should express similar underlying views regardless of framing, which we measure using an LLM-as-judge to score agreement or divergence between paired responses. Applied across leading open- and closed-source models, the benchmark reveals large variation in alignment and highlights trade-offs between safety strategies (e.g., refusals) and more expressive value systems. By providing a scalable, reproducible benchmark, VAL-Bench enables systematic comparison of how reliably LLMs embody human values.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 价值一致性 基准测试 争议性问题 人类价值观
相关文章