cs.AI updates on arXiv.org 10月08日 12:06
AI编程任务中Dunning-Kruger效应研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了人工智能在编程任务中存在的Dunning-Kruger效应,分析了模型在不同编程语言中的表现,发现AI模型在低资源或陌生领域表现出类似人类的过度自信,模型能力越低,偏差越强。

arXiv:2510.05457v1 Announce Type: new Abstract: As artificial intelligence systems increasingly collaborate with humans in creative and technical domains, questions arise about the cognitive boundaries and biases that shape our shared agency. This paper investigates the Dunning-Kruger Effect (DKE), the tendency for those with limited competence to overestimate their abilities in state-of-the-art LLMs in coding tasks. By analyzing model confidence and performance across a diverse set of programming languages, we reveal that AI models mirror human patterns of overconfidence, especially in unfamiliar or low-resource domains. Our experiments demonstrate that less competent models and those operating in rare programming languages exhibit stronger DKE-like bias, suggesting that the strength of the bias is proportionate to the competence of the models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI编程 Dunning-Kruger效应 模型能力 编程语言
相关文章