cs.AI updates on arXiv.org 10月08日
MHA-RAG:提升有限数据域适应的生成模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究将基础模型应用于新领域时,如何以有限训练数据高效、稳定地利用领域特定示例。提出了一种新型模型架构MHA-RAG,通过软提示与无序不变模型,在多个问答基准测试中实现了20%的性能提升,同时降低了推理成本。

arXiv:2510.05363v1 Announce Type: new Abstract: Adapting Foundation Models to new domains with limited training data is challenging and computationally expensive. While prior work has demonstrated the effectiveness of using domain-specific exemplars as in-context demonstrations, we investigate whether representing exemplars purely as text is the most efficient, effective, and stable approach. We explore an alternative: representing exemplars as soft prompts with an exemplar order invariant model architecture. To this end, we introduce Multi-Head Attention Retrieval-Augmented Generation (MHA-RAG), a framework with the number of attention heads serving as a simple hyperparameter to control soft prompt-generation across different tasks. Across multiple question-answering benchmarks and model scales, MHA-RAG achieves a 20-point performance gain over standard RAG, while cutting inference costs by a factor of 10X GFLOPs-delivering both higher accuracy and greater efficiency, invariant to exemplar order.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MHA-RAG 生成模型 有限数据域 模型架构 软提示
相关文章