cs.AI updates on arXiv.org 10月07日
LLM助力生态数据集整合
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于大型语言模型(LLM)的生态数据集整合工具,可灵活提取并统一不同数据集的元数据,以促进生态研究。

arXiv:2508.20115v2 Announce Type: replace-cross Abstract: Large, open datasets can accelerate ecological research, particularly by enabling researchers to develop new insights by reusing datasets from multiple sources. However, to find the most suitable datasets to combine and integrate, researchers must navigate diverse ecological and environmental data provider platforms with varying metadata availability and standards. To overcome this obstacle, we have developed a large language model (LLM)-based metadata harvester that flexibly extracts metadata from any dataset's landing page, and converts these to a user-defined, unified format using existing metadata standards. We validate that our tool is able to extract both structured and unstructured metadata with equal accuracy, aided by our LLM post-processing protocol. Furthermore, we utilise LLMs to identify links between datasets, both by calculating embedding similarity and by unifying the formats of extracted metadata to enable rule-based processing. Our tool, which flexibly links the metadata of different datasets, can therefore be used for ontology creation or graph-based queries, for example, to find relevant ecological and environmental datasets in a virtual research environment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 生态数据集 元数据整合 生态研究 LLM
相关文章