cs.AI updates on arXiv.org 10月07日
SSFO:首个自监督RAG忠实度优化方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SSFO,一种针对RAG系统的自监督忠实度优化方法,通过对比模型输出与语境的对比,优化RAG的忠实度,无需额外标注成本或推理负担,在多个问答数据集上实现最先进的忠实度。

arXiv:2508.17225v2 Announce Type: replace-cross Abstract: Retrieval-Augmented Generation (RAG) systems require Large Language Models (LLMs) to generate responses that are faithful to the retrieved context. However, faithfulness hallucination remains a critical challenge, as existing methods often require costly supervision and post-training or significant inference burdens. To overcome these limitations, we introduce Self-Supervised Faithfulness Optimization (SSFO), the first self-supervised alignment approach for enhancing RAG faithfulness. SSFO constructs preference data pairs by contrasting the model's outputs generated with and without the context. Leveraging Direct Preference Optimization (DPO), SSFO aligns model faithfulness without incurring labeling costs or additional inference burden. We theoretically and empirically demonstrate that SSFO leverages a benign form of \emph{likelihood displacement}, transferring probability mass from parametric-based tokens to context-aligned tokens. Based on this insight, we propose a modified DPO loss function to encourage likelihood displacement. Comprehensive evaluations show that SSFO significantly outperforms existing methods, achieving state-of-the-art faithfulness on multiple context-based question-answering datasets. Notably, SSFO exhibits strong generalization, improving cross-lingual faithfulness and preserving general instruction-following capabilities. We release our code and model at the anonymous link: https://github.com/chkwy/SSFO

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG 忠实度优化 自监督学习 问答系统 语言模型
相关文章