cs.AI updates on arXiv.org 10月07日 12:19
强化学习在真实世界应用中的挑战与解决方案
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了现代强化学习(RL)系统在解决现实世界问题时的核心挑战,特别是在数据模拟成本高昂且环境存在不确定性的场景。文章指出,在真实世界部署RL代理时,训练环境与实际应用环境之间的必然不对齐是关键问题,并提出了解决这一问题的零样本强化学习(zero-shot RL)新范式。为应对现实世界特有的数据质量低、状态部分可观测以及数据获取受限等约束,作者提出了一系列方法,并通过实证研究展示了现有方法的不足,论证了其提出的技术如何有效解决这些问题,从而推动RL技术更接近实际应用。

🎯 **强化学习的潜力和现实瓶颈**:现代强化学习(RL)系统在模拟数据充足的领域表现出色,能发现超越人类能力的决策策略。然而,许多现实世界问题的数据难以廉价模拟,这使得RL的应用面临巨大挑战,尤其是在需要泛化到新任务或领域且无法进行试探性学习(zero-shot RL)的情况下。

🌐 **现实世界部署的三大核心约束**:在真实世界中部署RL代理,必须克服三个关键约束:1. **数据质量约束**:真实世界的数据集通常较小且同质化,难以覆盖所有可能情况;2. **可观测性约束**:现实世界中的状态、动力学和奖励往往是部分可观测的,增加了学习的难度;3. **数据可用性约束**:并非总能在事前获得所需数据,需要能够处理数据有限或不可用的情况。

🚀 **零样本强化学习的创新方法**:为应对上述挑战,本文提出了一系列旨在提高RL在受限现实世界环境中进行零样本泛化能力的方法。通过实证研究,作者揭示了现有方法的局限性,并展示了其提出技术在改善RL代理适应性和鲁棒性方面的有效性,为RL在实际应用中解决复杂问题提供了新的思路和工具。

arXiv:2508.16496v2 Announce Type: replace-cross Abstract: Modern reinforcement learning (RL) systems capture deep truths about general, human problem-solving. In domains where new data can be simulated cheaply, these systems uncover sequential decision-making policies that far exceed the ability of any human. Society faces many problems whose solutions require this skill, but they are often in domains where new data cannot be cheaply simulated. In such scenarios, we can learn simulators from existing data, but these will only ever be approximately correct, and can be pathologically incorrect when queried outside of their training distribution. As a result, a misalignment between the environments in which we train our agents and the real-world in which we wish to deploy our agents is inevitable. Dealing with this misalignment is the primary concern of zero-shot reinforcement learning, a problem setting where the agent must generalise to a new task or domain with zero practice shots. Whilst impressive progress has been made on methods that perform zero-shot RL in idealised settings, new work is needed if these results are to be replicated in real-world settings. In this thesis, we argue that doing so requires us to navigate (at least) three constraints. First, the data quality constraint: real-world datasets are small and homogeneous. Second, the observability constraint: states, dynamics and rewards in the real-world are often only partially observed. And third, the data availability constraint: a priori access to data cannot always be assumed. This work proposes a suite of methods that perform zero-shot RL subject to these constraints. In a series of empirical studies we expose the failings of existing methods, and justify our techniques for remedying them. We believe these designs take us a step closer to RL methods that can be deployed to solve real-world problems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 零样本强化学习 数据质量 可观测性 现实世界应用 Reinforcement Learning Zero-Shot RL Data Quality Observability Real-World Applications
相关文章