cs.AI updates on arXiv.org 10月07日
QuIC Adapters:高效微调大模型新途径
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为QuIC Adapters的参数高效微调方法,利用Hamming权重保护量子电路,在保持预训练表示的同时,通过较小的内存占用实现对大型模型的有效微调,为资源受限环境下的模型微调提供了一种新的可能性。

arXiv:2502.06916v2 Announce Type: replace-cross Abstract: Scaling full finetuning of large foundation models strains GPU memory and training time. Parameter Efficient Fine-Tuning (PEFT) methods address this issue via adapter modules which update only a small subset of model parameters. In this work, we introduce Quantum-Inspired Compound Adapters (QuIC Adapters), a PEFT approach inspired from Hamming-weight preserving quantum circuits that can effectively finetune a model using less than 0.02\% memory footprint of the base model. QuIC adapters preserve pretrained representations by enforcing orthogonality in weight parameters, and have native deployment mechanisms on quantum computers. We test QuIC adapters by finetuning large language models like LLaMA and vision transformers on language, math, reasoning and vision benchmarks. In its first-order configuration, QuIC recovers the performance of existing orthogonal methods, while higher-order configurations enable substantial parameter compression (over 40x smaller than LoRA) for a modest performance trade-off, unlocking applications in highly resource-constrained environments. Through ablation studies, we determine that combining multiple Hamming-weight orders with orthogonality and matrix compounding are essential for performant finetuning. Our findings suggest that QuIC adapters offers a promising direction for efficient finetuning of foundation models in resource-constrained environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型微调 参数高效 量子电路 资源受限
相关文章