cs.AI updates on arXiv.org 10月07日
因果可解释性:反事实方法及其应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为反事实可解释性的新概念,用于因果归因,以遗传可遗传性在双生子研究中的概念为动机。该方法扩展了全局敏感性分析方法,通过有向无环图描述变量之间的因果关系,实现因果机制的直接整合。在共单调性假设下,本文讨论了估计反事实可解释性的方法,并将其应用于实际数据集,以性别、种族和教育成就解释收入不平等。

arXiv:2411.01625v2 Announce Type: replace-cross Abstract: Existing tools for explaining complex models and systems are associational rather than causal and do not provide mechanistic understanding. We propose a new notion called counterfactual explainability for causal attribution that is motivated by the concept of genetic heritability in twin studies. Counterfactual explainability extends methods for global sensitivity analysis (including the functional analysis of variance and Sobol's indices), which assumes independent explanatory variables, to dependent explanations by using a directed acyclic graphs to describe their causal relationship. Therefore, this explanability measure directly incorporates causal mechanisms by construction. Under a comonotonicity assumption, we discuss methods for estimating counterfactual explainability and apply them to a real dataset dataset to explain income inequality by gender, race, and educational attainment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果可解释性 反事实方法 全局敏感性分析 收入不平等 遗传可遗传性
相关文章