cs.AI updates on arXiv.org 10月07日 12:18
NPField-GPT:动态神经势场在机器人轨迹优化中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为NPField-GPT的动态神经势场模型,结合了传统优化和基于Transformer的预测器,用于机器人轨迹优化,以提高机器人移动的安全性和可靠性。

arXiv:2410.06819v2 Announce Type: replace-cross Abstract: Generalist robot policies must operate safely and reliably in everyday human environments such as homes, offices, and warehouses, where people and objects move unpredictably. We present Dynamic Neural Potential Field (NPField-GPT), a learning-enhanced model predictive control (MPC) framework that couples classical optimization with a Transformer-based predictor of footprint-aware repulsive potentials. Given an occupancy sub-map, robot footprint, and optional dynamic-obstacle cues, our autoregressive NPField-GPT head forecasts a horizon of differentiable potentials that are injected into a sequential quadratic MPC program via L4CasADi, yielding real-time, constraint-aware trajectory optimization. We additionally study two baselines: (NPField-D1) static-frame decomposition and (NPField-D2) parallel MLP heads for all steps. In dynamic indoor scenarios from BenchMR and on a Husky UGV in office corridors, NPField-GPT produces safer, more conservative trajectories under motion changes, while D1/D2 offer lower latency. We also compare with the CIAO* and MPPI baselines. Across methods, the Transformer+MPC synergy preserves the transparency and stability of model-based planning while learning only the part that benefits from data: spatiotemporal collision risk. Code and trained models are available at https://github.com/CognitiveAISystems/Dynamic-Neural-Potential-Field

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人轨迹优化 动态神经势场 MPC Transformer
相关文章