cs.AI updates on arXiv.org 10月07日
L3DE:评估AI生成视频3D真实性的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为L3DE的评估方法,用于评估AI生成视频的3D真实性,通过3D卷积网络区分真实与合成视频,并通过可视化工具指出不真实区域。

arXiv:2406.19568v2 Announce Type: replace-cross Abstract: Recent advancements in video diffusion models enable the generation of photorealistic videos with impressive 3D consistency and temporal coherence. However, the extent to which these AI-generated videos simulate the 3D visual world remains underexplored. In this paper, we introduce Learned 3D Evaluation (L3DE), an objective, quantifiable, and interpretable method for assessing AI-generated videos' ability to simulate the real world in terms of 3D visual qualities and consistencies, without requiring manually labeled defects or quality annotations. Instead of relying on 3D reconstruction, which is prone to failure with in-the-wild videos, L3DE employs a 3D convolutional network, trained on monocular 3D cues of motion, depth, and appearance, to distinguish real from synthetic videos. Confidence scores from L3DE quantify the gap between real and synthetic videos in terms of 3D visual coherence, while a gradient-based visualization pinpoints unrealistic regions, improving interpretability. We validate L3DE through extensive experiments, demonstrating strong alignment with 3D reconstruction quality and human judgments. Our evaluations on leading generative models (e.g., Kling, Sora, and MiniMax) reveal persistent simulation gaps and subtle inconsistencies. Beyond generative video assessment, L3DE extends to broader applications: benchmarking video generation models, serving as a deepfake detector, and enhancing video synthesis by inpainting flagged inconsistencies. Project page: https://justin-crchang.github.io/l3de-project-page/

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI生成视频 3D真实性 L3DE评估方法
相关文章