cs.AI updates on arXiv.org 10月07日
深度学习在表格数据上的突破性表现
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过对比评估17种最先进的深度学习、经典机器学习和AutoML方法,在68个不同数据集上的表现,表明深度学习方法在表格数据上超越了传统方法,揭示了深度学习在表格数据处理的范式转变。

arXiv:2402.03970v3 Announce Type: replace-cross Abstract: Tabular data represent one of the most prevalent data formats in applied machine learning, largely because they accommodate a broad spectrum of real-world problems. Existing literature has studied many of the shortcomings of neural architectures on tabular data and has repeatedly confirmed the scalability and robustness of gradient-boosted decision trees across varied datasets. However, recent deep learning models have not been subjected to a comprehensive evaluation under conditions that allow for a fair comparison with existing classical approaches. This situation motivates an investigation into whether recent deep-learning paradigms outperform classical ML methods on tabular data. Our survey fills this gap by benchmarking seventeen state-of-the-art methods, spanning neural networks, classical ML and AutoML techniques. Our empirical results over 68 diverse datasets from a well-established benchmark indicate a paradigm shift, where Deep Learning methods outperform classical approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 表格数据 机器学习 比较研究 范式转变
相关文章