cs.AI updates on arXiv.org 10月07日
高效计算欧几里得Wasserstein-2对偶势的凸共轭
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究计算欧几里得Wasserstein-2最优传输中的凸共轭,提出使用近似优化方法学习预测共轭的模型,显著提高传输图学习质量,并支持多种二维耦合与流模型。

arXiv:2210.12153v3 Announce Type: replace-cross Abstract: This paper focuses on computing the convex conjugate (also known as the Legendre-Fenchel conjugate or c-transform) that appears in Euclidean Wasserstein-2 optimal transport. This conjugation is considered difficult to compute and in practice, methods are limited by not being able to exactly conjugate the dual potentials in continuous space. To overcome this, the computation of the conjugate can be approximated with amortized optimization, which learns a model to predict the conjugate. I show that combining amortized approximations to the conjugate with a solver for fine-tuning significantly improves the quality of transport maps learned for the Wasserstein-2 benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional couplings and flows considered in the literature. All baselines, methods, and solvers are publicly available at http://github.com/facebookresearch/w2ot.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Wasserstein-2 最优传输 凸共轭 近似优化 传输图
相关文章