cs.AI updates on arXiv.org 10月07日
神经策略车辆路径问题求解新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种迭代搜索框架,通过神经策略对车辆路径问题进行解构,并配合贪婪插入算法重建解,在三种不同规模的车辆路径问题上达到或超越现有运筹学方法。

arXiv:2501.03715v2 Announce Type: replace Abstract: Autoregressive construction approaches generate solutions to vehicle routing problems in a step-by-step fashion, leading to high-quality solutions that are nearing the performance achieved by handcrafted operations research techniques. In this work, we challenge the conventional paradigm of sequential solution construction and introduce an iterative search framework where solutions are instead deconstructed by a neural policy. Throughout the search, the neural policy collaborates with a simple greedy insertion algorithm to rebuild the deconstructed solutions. Our approach matches or surpasses the performance of state-of-the-art operations research methods across three challenging vehicle routing problems of various problem sizes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经策略 车辆路径问题 运筹学方法
相关文章