cs.AI updates on arXiv.org 10月07日
数据聚类在数据科学中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨数据聚类在数据科学中的关键作用,分析了聚类方法、工具及其在各个领域的应用。文中对传统聚类技术及先进聚类方法进行了比较,并探讨了聚类实施中的挑战及未来研究方向。

arXiv:2412.18760v3 Announce Type: replace Abstract: This paper explores the critical role of data clustering in data science, emphasizing its methodologies, tools, and diverse applications. Traditional techniques, such as partitional and hierarchical clustering, are analyzed alongside advanced approaches such as data stream, density-based, graph-based, and model-based clustering for handling complex structured datasets. The paper highlights key principles underpinning clustering, outlines widely used tools and frameworks, introduces the workflow of clustering in data science, discusses challenges in practical implementation, and examines various applications of clustering. By focusing on these foundations and applications, the discussion underscores clustering's transformative potential. The paper concludes with insights into future research directions, emphasizing clustering's role in driving innovation and enabling data-driven decision-making.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据聚类 数据科学 聚类方法 应用研究 挑战
相关文章