cs.AI updates on arXiv.org 10月07日 12:18
LLMs与人类在类比能力上的差异
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在类比能力上的局限性,通过与人类和儿童进行对比实验,发现LLMs在跨领域类比任务上的表现不如人类。

arXiv:2411.02348v3 Announce Type: replace Abstract: In people, the ability to solve analogies such as "body : feet :: table : ?" emerges in childhood, and appears to transfer easily to other domains, such as the visual domain "( : ) :: < : ?". Recent research shows that large language models (LLMs) can solve various forms of analogies. However, can LLMs generalize analogy solving to new domains like people can? To investigate this, we had children, adults, and LLMs solve a series of letter-string analogies (e.g., a b : a c :: j k : ?) in the Latin alphabet, in a near transfer domain (Greek alphabet), and a far transfer domain (list of symbols). Children and adults easily generalized their knowledge to unfamiliar domains, whereas LLMs did not. This key difference between human and AI performance is evidence that these LLMs still struggle with robust human-like analogical transfer.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 类比能力 跨领域 人类对比 AI局限性
相关文章