cs.AI updates on arXiv.org 10月07日 12:17
决策聚焦学习:约束优化问题参数预测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对约束优化问题参数预测的决策聚焦学习(DFL)框架,通过预测参数并优化决策质量,解决参数不确定性带来的预测-优化问题。框架使用最大似然估计(MLE)推导出两个损失函数,并引入可调参数以平衡可行性和决策质量。

arXiv:2510.04951v1 Announce Type: cross Abstract: When some parameters of a constrained optimization problem (COP) are uncertain, this gives rise to a predict-then-optimize (PtO) problem, comprising two stages -- the prediction of the unknown parameters from contextual information and the subsequent optimization using those predicted parameters. Decision-focused learning (DFL) implements the first stage by training a machine learning (ML) model to optimize the quality of the decisions made using the predicted parameters. When parameters in the constraints of a COP are predicted, the predicted parameters can lead to infeasible solutions. Therefore, it is important to simultaneously manage both feasibility and decision quality. We develop a DFL framework for predicting constraint parameters in a generic COP. While prior works typically assume that the underlying optimization problem is a linear program (LP) or integer linear program (ILP), our approach makes no such assumption. We derive two novel loss functions based on maximum likelihood estimation (MLE): the first one penalizes infeasibility (by penalizing when the predicted parameters lead to infeasible solutions), and the second one penalizes suboptimal decisions (by penalizing when the true optimal solution is infeasible under the predicted parameters). We introduce a single tunable parameter to form a weighted average of the two losses, allowing decision-makers to balance suboptimality and feasibility. We experimentally demonstrate that adjusting this parameter provides a decision-maker the control over the trade-off between the two. Moreover, across several COP instances, we find that for a single value of the tunable parameter, our method matches the performance of the existing baselines on suboptimality and feasibility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

决策聚焦学习 约束优化问题 参数预测 最大似然估计 损失函数
相关文章