cs.AI updates on arXiv.org 10月07日 12:17
LSD:检测LLM幻觉的几何框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LSD的几何框架,用于检测大型语言模型(LLMs)中的幻觉现象。通过分析隐藏状态语义在Transformer层中的演变,LSD在模型表示空间内进行操作,并与事实编码器提取的真实嵌入进行对比学习,实现幻觉检测。在TruthfulQA和合成事实-幻觉数据集上评估,LSD在效率与精度之间取得平衡,为实时幻觉监控提供了一种可扩展、模型无关的机制。

arXiv:2510.04933v1 Announce Type: cross Abstract: Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 幻觉检测 几何框架 事实编码器 模型无关
相关文章