cs.AI updates on arXiv.org 10月07日
FedSSL-AMC:联邦学习中的自动调制分类模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FedSSL-AMC模型,通过在分布式客户端上训练因果、时间膨胀的CNN和三元组损失自监督,结合客户端的SVM分类器,在联邦学习环境中解决自动调制分类问题,有效处理了数据隐私、通信开销和模型鲁棒性问题。

arXiv:2510.04927v1 Announce Type: cross Abstract: Training automatic modulation classification (AMC) models on centrally aggregated data raises privacy concerns, incurs communication overhead, and often fails to confer robustness to channel shifts. Federated learning (FL) avoids central aggregation by training on distributed clients but remains sensitive to class imbalance, non-IID client distributions, and limited labeled samples. We propose FedSSL-AMC, which trains a causal, time-dilated CNN with triplet-loss self-supervision on unlabeled I/Q sequences across clients, followed by per-client SVMs on small labeled sets. We establish convergence of the federated representation learning procedure and a separability guarantee for the downstream classifier under feature noise. Experiments on synthetic and over-the-air datasets show consistent gains over supervised FL baselines under heterogeneous SNR, carrier-frequency offsets, and non-IID label partitions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 自动调制分类 数据隐私 通信开销 模型鲁棒性
相关文章