cs.AI updates on arXiv.org 10月07日
BCFP:一种新的高效BBBP预测方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于键的指纹(BCFP),作为ECFP的补充,并在BBBP分类任务中取得了良好的效果。通过结合BCFP和ECFP,实现了AUROC和AUPRC的显著提升,并提出了BCFP-Sort&Slice特征组合方案,进一步提高了预测性能。

arXiv:2510.04837v1 Announce Type: cross Abstract: Bond Centered FingerPrint (BCFP) are a complementary, bond-centric alternative to Extended-Connectivity Fingerprints (ECFP). We introduce a static BCFP that mirrors the bond-convolution used by directed message-passing GNNs like ChemProp, and evaluate it with a fast rapid Random Forest model on Brain-Blood Barrier Penetration (BBBP) classification task. Across stratified cross-validation, concatenating ECFP with BCFP consistently improves AUROC and AUPRC over either descriptor alone, as confirmed by Turkey HSD multiple-comparison analysis. Among radii, r = 1 performs best; r = 2 does not yield statistically separable gains under the same test. We further propose BCFP-Sort&Slice, a simple feature-combination scheme that preserves the out-of-vocabulary (OOV) count information native to ECFP count vectors while enabling compact unhashed concatenation of BCFP variants. We also outperform the MGTP prediction on our BBBP evaluation, using such composite new features bond and atom features. These results show that lightweight, bond-centered descriptors can complement atom-centered circular fingerprints and provide strong, fast baselines for BBBP prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BCFP BBBP预测 特征组合 指纹技术
相关文章