cs.AI updates on arXiv.org 10月07日
基于LASSO与Elastic Net的敏捷故事点估算模型研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于LASSO和Elastic Net回归技术的敏捷故事点估算模型,并通过21个软件项目进行实验验证,结果显示LASSO回归在预测性能方面优于其他方法。

arXiv:2510.04760v1 Announce Type: cross Abstract: Software development effort estimation is one of the most critical aspect in software development process, as the success or failure of the entire project depends on the accuracy of estimations. Researchers are still conducting studies on agile effort estimation. The aim of this research is to develop a story point based agile effort estimation model using LASSO and Elastic Net regression techniques. The experimental work is applied to the agile story point approach using 21 software projects collected from six firms. The two algorithms are trained using their default parameters and tuned grid search with 5-fold cross-validation to get an enhanced model. The experiment result shows LASSO regression achieved better predictive performance PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The results are also compared with other related literature.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

敏捷开发 故事点估算 LASSO回归 Elastic Net
相关文章