cs.AI updates on arXiv.org 10月07日
MULVULN:跨语言软件漏洞检测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MULVULN,一种基于多语言源代码的软件漏洞检测方法,有效融合了跨语言和语言特定知识,显著提升了检测效果。

arXiv:2510.04397v1 Announce Type: cross Abstract: Software vulnerabilities (SVs) pose a critical threat to safety-critical systems, driving the adoption of AI-based approaches such as machine learning and deep learning for software vulnerability detection. Despite promising results, most existing methods are limited to a single programming language. This is problematic given the multilingual nature of modern software, which is often complex and written in multiple languages. Current approaches often face challenges in capturing both shared and language-specific knowledge of source code, which can limit their performance on diverse programming languages and real-world codebases. To address this gap, we propose MULVULN, a novel multilingual vulnerability detection approach that learns from source code across multiple languages. MULVULN captures both the shared knowledge that generalizes across languages and the language-specific knowledge that reflects unique coding conventions. By integrating these aspects, it achieves more robust and effective detection of vulnerabilities in real-world multilingual software systems. The rigorous and extensive experiments on the real-world and diverse REEF dataset, consisting of 4,466 CVEs with 30,987 patches across seven programming languages, demonstrate the superiority of MULVULN over thirteen effective and state-of-the-art baselines. Notably, MULVULN achieves substantially higher F1-score, with improvements ranging from 1.45% to 23.59% compared to the baseline methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软件漏洞检测 多语言 机器学习 深度学习 F1-score
相关文章