cs.AI updates on arXiv.org 10月07日
动态加权推荐模型:提升稀疏域推荐效果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种动态加权损失函数,根据训练数据中域的稀疏度调整权重,以提升稀疏或细分领域中的推荐效果,并通过实证验证其优越性。

arXiv:2510.04375v1 Announce Type: cross Abstract: The effectiveness of single-model sequential recommendation architectures, while scalable, is often limited when catering to "power users" in sparse or niche domains. Our previous research, PinnerFormerLite, addressed this by using a fixed weighted loss to prioritize specific domains. However, this approach can be sub-optimal, as a single, uniform weight may not be sufficient for domains with very few interactions, where the training signal is easily diluted by the vast, generic dataset. This paper proposes a novel, data-driven approach: a Dynamic Weighted Loss function with comprehensive theoretical foundations and extensive empirical validation. We introduce an adaptive algorithm that adjusts the loss weight for each domain based on its sparsity in the training data, assigning a higher weight to sparser domains and a lower weight to denser ones. This ensures that even rare user interests contribute a meaningful gradient signal, preventing them from being overshadowed. We provide rigorous theoretical analysis including convergence proofs, complexity analysis, and bounds analysis to establish the stability and efficiency of our approach. Our comprehensive empirical validation across four diverse datasets (MovieLens, Amazon Electronics, Yelp Business, LastFM Music) with state-of-the-art baselines (SIGMA, CALRec, SparseEnNet) demonstrates that this dynamic weighting system significantly outperforms all comparison methods, particularly for sparse domains, achieving substantial lifts in key metrics like Recall at 10 and NDCG at 10 while maintaining performance on denser domains and introducing minimal computational overhead.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推荐系统 动态加权 稀疏域 推荐效果 数据驱动
相关文章