cs.AI updates on arXiv.org 10月07日
ZoomIn:提升AI图像识别准确性及可解释性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ZoomIn,一种两阶段图像取证框架,用于提高AI图像识别的准确性和可解释性。通过模拟人类视觉检查,ZoomIn首先扫描图像定位可疑区域,然后对这些区域进行聚焦分析。同时,引入MagniFake数据集以支持训练,实现96.39%的准确率。

arXiv:2510.04225v1 Announce Type: cross Abstract: The rapid growth of AI-generated imagery has blurred the boundary between real and synthetic content, raising critical concerns for digital integrity. Vision-language models (VLMs) offer interpretability through explanations but often fail to detect subtle artifacts in high-quality synthetic images. We propose ZoomIn, a two-stage forensic framework that improves both accuracy and interpretability. Mimicking human visual inspection, ZoomIn first scans an image to locate suspicious regions and then performs a focused analysis on these zoomed-in areas to deliver a grounded verdict. To support training, we introduce MagniFake, a dataset of 20,000 real and high-quality synthetic images annotated with bounding boxes and forensic explanations, generated through an automated VLM-based pipeline. Our method achieves 96.39% accuracy with robust generalization, while providing human-understandable explanations grounded in visual evidence.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI图像识别 图像取证 可解释性 数据集 准确性
相关文章