cs.AI updates on arXiv.org 10月07日 12:16
MASC模型提升AR图像生成效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Manifold-Aligned Semantic Clustering(MASC)模型,通过构建语义树结构优化AR模型图像生成,有效提高训练效率和生成质量。

arXiv:2510.04220v1 Announce Type: cross Abstract: Autoregressive (AR) models have shown great promise in image generation, yet they face a fundamental inefficiency stemming from their core component: a vast, unstructured vocabulary of visual tokens. This conventional approach treats tokens as a flat vocabulary, disregarding the intrinsic structure of the token embedding space where proximity often correlates with semantic similarity. This oversight results in a highly complex prediction task, which hinders training efficiency and limits final generation quality. To resolve this, we propose Manifold-Aligned Semantic Clustering (MASC), a principled framework that constructs a hierarchical semantic tree directly from the codebook's intrinsic structure. MASC employs a novel geometry-aware distance metric and a density-driven agglomerative construction to model the underlying manifold of the token embeddings. By transforming the flat, high-dimensional prediction task into a structured, hierarchical one, MASC introduces a beneficial inductive bias that significantly simplifies the learning problem for the AR model. MASC is designed as a plug-and-play module, and our extensive experiments validate its effectiveness: it accelerates training by up to 57% and significantly improves generation quality, reducing the FID of LlamaGen-XL from 2.87 to 2.58. MASC elevates existing AR frameworks to be highly competitive with state-of-the-art methods, establishing that structuring the prediction space is as crucial as architectural innovation for scalable generative modeling.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AR模型 图像生成 MASC 效率提升 语义聚类
相关文章