cs.AI updates on arXiv.org 10月07日
MLLMEraser:一种测试时无训练的多模态学习消除框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MLLMEraser的无训练测试时多模态学习消除框架,通过激活引导实现动态知识消除,在降低计算成本的同时,保持保留知识的效用,并有效消除指定内容。

arXiv:2510.04217v1 Announce Type: cross Abstract: Multimodal large language models (MLLMs) have demonstrated remarkable capabilities across vision-language tasks, yet their large-scale deployment raises pressing concerns about memorized private data, outdated knowledge, and harmful content. Existing unlearning approaches for MLLMs typically adapt training-based strategies such as gradient ascent or preference optimization, but these methods are computationally expensive, irreversible, and often distort retained knowledge. In this work, we propose MLLMEraser, an input-aware, training-free framework for test-time unlearning. Our approach leverages activation steering to enable dynamic knowledge erasure without parameter updates. Specifically, we construct a multimodal erasure direction by contrasting adversarially perturbed, knowledge-recall image-text pairs with knowledge-erasure counterparts, capturing both textual and visual discrepancies. To prevent unnecessary interference, we further design an input-aware steering mechanism that adaptively determines when and how the erasure direction should be applied, preserving utility on retained knowledge while enforcing forgetting on designated content. Experiments on LLaVA-1.5 and Qwen-2.5-VL demonstrate that MLLMEraser consistently outperforms state-of-the-art MLLM unlearning baselines, achieving stronger forgetting performance with lower computational cost and minimal utility degradation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态学习 测试时无训练 知识消除 MLLMs 激活引导
相关文章