cs.AI updates on arXiv.org 10月07日
PolyKAN:高效压缩Kolmogorov-Arnold网络新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为PolyKAN的新框架,用于高效压缩Kolmogorov-Arnold网络,提供模型大小缩减和近似误差的正式保证,以优化神经网络的可解释性和数学基础。

arXiv:2510.04205v1 Announce Type: cross Abstract: Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional Multi-Layer Perceptrons (MLPs), offering enhanced interpretability and a strong mathematical foundation. However, their parameter efficiency remains a significant challenge for practical deployment. This paper introduces PolyKAN, a novel theoretical framework for KAN compression that provides formal guarantees on both model size reduction and approximation error. By leveraging the inherent piecewise polynomial structure of KANs, we formulate the compression problem as one of optimal polyhedral region merging. We establish a rigorous polyhedral characterization of KANs, develop a complete theory of $\epsilon$-equivalent compression, and design an optimal dynamic programming algorithm that guarantees minimal compression under specified error bounds. Our theoretical analysis demonstrates that PolyKAN achieves provably minimal compression while maintaining strict error control, with polynomial-time complexity in all network parameters. The framework provides the first formal foundation for KAN compression with mathematical guarantees, opening new directions for efficient deployment of interpretable neural architectures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Kolmogorov-Arnold网络 模型压缩 神经网络 数学保证 高效部署
相关文章