cs.AI updates on arXiv.org 10月07日
材料原理增强神经网络建模
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合材料原理的神经网络建模方法,通过引入双势能,增强对有限应变下的各向异性和非线性的捕捉。该方法采用基于不变量的输入表示,并引入输入单调神经网络,以拓宽可接受势能类。通过循环液态神经网络,实现了有限应变下的时间积分和稳定性,并在材料点和结构尺度上进行了评估。

arXiv:2510.04187v1 Announce Type: cross Abstract: We propose a complement to constitutive modeling that augments neural networks with material principles to capture anisotropy and inelasticity at finite strains. The key element is a dual potential that governs dissipation, consistently incorporates anisotropy, and-unlike conventional convex formulations-satisfies the dissipation inequality without requiring convexity. Our neural network architecture employs invariant-based input representations in terms of mixed elastic, inelastic and structural tensors. It adapts Input Convex Neural Networks, and introduces Input Monotonic Neural Networks to broaden the admissible potential class. To bypass exponential-map time integration in the finite strain regime and stabilize the training of inelastic materials, we employ recurrent Liquid Neural Networks. The approach is evaluated at both material point and structural scales. We benchmark against recurrent models without physical constraints and validate predictions of deformation and reaction forces for unseen boundary value problems. In all cases, the method delivers accurate and stable performance beyond the training regime. The neural network and finite element implementations are available as open-source and are accessible to the public via https://doi.org/10.5281/zenodo.17199965.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 材料原理 建模 各向异性 非线性行为
相关文章