cs.AI updates on arXiv.org 10月07日 12:16
GA4GC框架优化编码代理性能与可持续性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GA4GC框架,旨在优化基于LLM的编码代理的运行时间和代码性能,通过发现帕累托最优参数和提示模板,实现可持续性和性能的平衡。实验表明,该方法可显著提高性能,降低运行时间,并平衡工业部署中的可持续性与优化效果。

arXiv:2510.04135v1 Announce Type: cross Abstract: Coding agents powered by LLMs face critical sustainability and scalability challenges in industrial deployment, with single runs consuming over 100k tokens and incurring environmental costs that may exceed optimization benefits. This paper introduces GA4GC, the first framework to systematically optimize coding agent runtime (greener agent) and code performance (greener code) trade-offs by discovering Pareto-optimal agent hyperparameters and prompt templates. Evaluation on the SWE-Perf benchmark demonstrates up to 135x hypervolume improvement, reducing agent runtime by 37.7% while improving correctness. Our findings establish temperature as the most critical hyperparameter, and provide actionable strategies to balance agent sustainability with code optimization effectiveness in industrial deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

编码代理 LLM 性能优化 可持续性 GA4GC框架
相关文章