cs.AI updates on arXiv.org 10月07日
SFPO:提升LLM推理能力的优化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Slow-Fast Policy Optimization (SFPO)框架,通过将每一步分解为三个阶段,提高LLM推理中的稳定性、减少rollouts并加速收敛。实验表明,SFPO在数学推理基准测试中优于GRPO,并显著降低rollouts和时间。

arXiv:2510.04072v1 Announce Type: cross Abstract: Reinforcement learning (RL) has become central to enhancing reasoning in large language models (LLMs). Yet on-policy algorithms such as Group Relative Policy Optimization (GRPO) often suffer in early training: noisy gradients from low-quality rollouts lead to unstable updates and inefficient exploration. We introduce Slow-Fast Policy Optimization (SFPO), a simple yet efficient framework to address these limitations via decomposing each step into three stages: a short fast trajectory of inner steps on the same batch, a reposition mechanism to control off-policy drift, and a final slow correction. This reposition-before-update design preserves the objective and rollout process unchanged, making SFPO plug-compatible with existing policy-gradient pipelines. Extensive experiments demonstrate that SFPO consistently improves stability, reduces rollouts, and accelerates convergence of reasoning RL training. Specifically, it outperforms GRPO by up to 2.80 points in average on math reasoning benchmarks. It also achieves up to 4.93\texttimes{} fewer rollouts and a 4.19\texttimes{} reduction in wall-clock time to match GRPO's best accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 大语言模型 推理能力 优化框架 收敛速度
相关文章