cs.AI updates on arXiv.org 10月07日
深度学习图像编辑:提升精确性与可靠性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了利用深度学习进行图像编辑的精确性和可靠性,通过优化超参数和提出新的框架,如“word swap”方法和“CL P2P”框架,解决现有技术中存在的问题,如循环不一致性。

arXiv:2510.04034v1 Announce Type: cross Abstract: Recent advances in image editing have shifted from manual pixel manipulation to employing deep learning methods like stable diffusion models, which now leverage cross-attention mechanisms for text-driven control. This transition has simplified the editing process but also introduced variability in results, such as inconsistent hair color changes. Our research aims to enhance the precision and reliability of prompt-to-prompt image editing frameworks by exploring and optimizing hyperparameters. We present a comprehensive study of the "word swap" method, develop an "attention re-weight method" for better adaptability, and propose the "CL P2P" framework to address existing limitations like cycle inconsistency. This work contributes to understanding and improving the interaction between hyperparameter settings and the architectural choices of neural network models, specifically their attention mechanisms, which significantly influence the composition and quality of the generated images.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 图像编辑 超参数优化 神经网络架构 注意力机制
相关文章