cs.AI updates on arXiv.org 10月07日 12:16
SFP:基于规划的时间空间预测新范式
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SFP的时间空间预测新范式,结合模型强化学习,通过构建生成世界模型模拟未来状态,利用非可微度量的奖励信号引导模型探索,显著降低预测误差。

arXiv:2510.04020v1 Announce Type: cross Abstract: To address the dual challenges of inherent stochasticity and non-differentiable metrics in physical spatiotemporal forecasting, we propose Spatiotemporal Forecasting as Planning (SFP), a new paradigm grounded in Model-Based Reinforcement Learning. SFP constructs a novel Generative World Model to simulate diverse, high-fidelity future states, enabling an "imagination-based" environmental simulation. Within this framework, a base forecasting model acts as an agent, guided by a beam search-based planning algorithm that leverages non-differentiable domain metrics as reward signals to explore high-return future sequences. These identified high-reward candidates then serve as pseudo-labels to continuously optimize the agent's policy through iterative self-training, significantly reducing prediction error and demonstrating exceptional performance on critical domain metrics like capturing extreme events.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间空间预测 模型强化学习 生成世界模型
相关文章