cs.AI updates on arXiv.org 10月07日 12:16
dLLMs的强化学习优化方法AGRPO
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对扩散大型语言模型(dLLMs)的强化学习算法AGRPO,通过蒙特卡洛采样计算无偏策略梯度估计,有效提升了dLLMs在数学/推理任务上的性能。

arXiv:2510.04019v1 Announce Type: cross Abstract: Diffusion large language models (dLLMs) are a new paradigm of non-autoregressive language models that are trained to predict multiple tokens in parallel and generate text via iterative unmasking. Recent works have successfully pretrained dLLMs to parity with autoregressive LLMs at the 8B scale, but dLLMs have yet to benefit from modern post-training techniques, e.g. reinforcement learning (RL), that have proven effective for autoregressive models. Crucially, algorithms designed for traditional LLMs aren't directly compatible with diffusion frameworks due to inherent differences in modeling assumptions. Moreover, existing attempts at dLLM post-training with RL rely on heuristic-based objectives with no theoretical grounding. In this work, we present Amortized Group Relative Policy Optimization (AGRPO), a principled on-policy RL algorithm designed specifically for dLLMs. AGRPO uses Monte Carlo sampling to compute an unbiased policy gradient estimate, making it the first tractable, faithful adaptation of policy gradient methods for dLLMs. We demonstrate AGRPO's effectiveness on different math/reasoning tasks, a common setting for RL with LLMs, achieving up to +7.6% absolute gain on GSM8K and 3.8x performance on the Countdown task over the baseline LLaDA-8B-Instruct model and 1.3x performance gains over comparable RL methods such as diffu-GRPO. Furthermore, these gains persist across different numbers of sampling steps at inference time, achieving better tradeoffs between compute and performance. Our results demonstrate that online RL algorithms can be extended to diffusion LLMs in principled ways, maintaining both theoretical soundness and practical effectiveness.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

dLLMs 强化学习 AGRPO 蒙特卡洛采样 性能提升
相关文章