cs.AI updates on arXiv.org 10月07日
泰国文本EOT检测:实时交互的关键
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对泰国文本的EOT检测方法,旨在提高实时语音交互的准确性。通过对比零样本和少量样本提示的紧凑型LLM与轻量级Transformer的监督微调,本文建立了泰国EOT检测的基准,并展示了小型微调模型在设备端实现近即时EOT决策的可行性。

arXiv:2510.04016v1 Announce Type: cross Abstract: Fluid voice-to-voice interaction requires reliable and low-latency detection of when a user has finished speaking. Traditional audio-silence end-pointers add hundreds of milliseconds of delay and fail under hesitations or language-specific phenomena. We present, to our knowledge, the first systematic study of Thai text-only end-of-turn (EOT) detection for real-time agents. We compare zero-shot and few-shot prompting of compact LLMs to supervised fine-tuning of lightweight transformers. Using transcribed subtitles from the YODAS corpus and Thai-specific linguistic cues (e.g., sentence-final particles), we formulate EOT as a binary decision over token boundaries. We report a clear accuracy-latency tradeoff and provide a public-ready implementation plan. This work establishes a Thai baseline and demonstrates that small, fine-tuned models can deliver near-instant EOT decisions suitable for on-device agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EOT检测 泰国文本 实时交互 LLM 微调模型
相关文章