cs.AI updates on arXiv.org 10月07日 12:16
隐私保护SNN推理框架PRIVSPIKE
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于CKKS同态加密的隐私保护SNN推理框架PRIVSPIKE,支持任意深度SNN,并通过优化精度和计算成本实现高效加密推理。

arXiv:2510.03995v1 Announce Type: cross Abstract: Deep learning has become a cornerstone of modern machine learning. It relies heavily on vast datasets and significant computational resources for high performance. This data often contains sensitive information, making privacy a major concern in deep learning. Spiking Neural Networks (SNNs) have emerged as an energy-efficient alternative to conventional deep learning approaches. Nevertheless, SNNs still depend on large volumes of data, inheriting all the privacy challenges of deep learning. Homomorphic encryption addresses this challenge by allowing computations to be performed on encrypted data, ensuring data confidentiality throughout the entire processing pipeline. In this paper, we introduce PRIVSPIKE, a privacy-preserving inference framework for SNNs using the CKKS homomorphic encryption scheme. PRIVSPIKE supports arbitrary depth SNNs and introduces two key algorithms for evaluating the Leaky Integrate-and-Fire activation function: (1) a polynomial approximation algorithm designed for high-performance SNN inference, and (2) a novel scheme-switching algorithm that optimizes precision at a higher computational cost. We evaluate PRIVSPIKE on MNIST, CIFAR-10, Neuromorphic MNIST, and CIFAR-10 DVS using models from LeNet-5 and ResNet-19 architectures, achieving encrypted inference accuracies of 98.10%, 79.3%, 98.1%, and 66.0%, respectively. On a consumer-grade CPU, SNN LeNet-5 models achieved inference times of 28 seconds on MNIST and 212 seconds on Neuromorphic MNIST. For SNN ResNet-19 models, inference took 784 seconds on CIFAR-10 and 1846 seconds on CIFAR-10 DVS. These results establish PRIVSPIKE as a viable and efficient solution for secure SNN inference, bridging the gap between energy-efficient deep neural networks and strong cryptographic privacy guarantees while outperforming prior encrypted SNN solutions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

隐私保护 SNN 同态加密 PRIVSPIKE 推理框架
相关文章