cs.AI updates on arXiv.org 10月07日
工具选择认证:LLM系统安全防护新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ToolCert,首个统计框架,用于评估工具选择的鲁棒性,以应对对抗性条件下的安全威胁。

arXiv:2510.03992v1 Announce Type: cross Abstract: Large language models (LLMs) are increasingly deployed in agentic systems where they map user intents to relevant external tools to fulfill a task. A critical step in this process is tool selection, where a retriever first surfaces candidate tools from a larger pool, after which the LLM selects the most appropriate one. This pipeline presents an underexplored attack surface where errors in selection can lead to severe outcomes like unauthorized data access or denial of service, all without modifying the agent's model or code. While existing evaluations measure task performance in benign settings, they overlook the specific vulnerabilities of the tool selection mechanism under adversarial conditions. To address this gap, we introduce ToolCert, the first statistical framework that formally certifies tool selection robustness. ToolCert models tool selection as a Bernoulli success process and evaluates it against a strong, adaptive attacker who introduces adversarial tools with misleading metadata, and are iteratively refined based on the agent's previous choices. By sampling these adversarial interactions, ToolCert produces a high-confidence lower bound on accuracy, formally quantifying the agent's worst-case performance. Our evaluation with ToolCert uncovers the severe fragility: under attacks injecting deceptive tools or saturating retrieval, the certified accuracy bound drops near zero, an average performance drop of over 60% compared to non-adversarial settings. For attacks targeting the retrieval and selection stages, the certified accuracy bound plummets to less than 20% after just a single round of adversarial adaptation. ToolCert thus reveals previously unexamined security threats inherent to tool selection and provides a principled method to quantify an agent's robustness to such threats, a necessary step for the safe deployment of agentic systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 工具选择 安全框架 鲁棒性 对抗性攻击
相关文章