cs.AI updates on arXiv.org 10月07日
Transformer架构的数学理论新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型连续框架,将Transformer视为结构化积分微分方程的离散化,深入解释其结构及操作,为理解其核心组件提供统一且可解释的基础。

arXiv:2510.03989v1 Announce Type: cross Abstract: The Transformer architecture has revolutionized the field of sequence modeling and underpins the recent breakthroughs in large language models (LLMs). However, a comprehensive mathematical theory that explains its structure and operations remains elusive. In this work, we propose a novel continuous framework that rigorously interprets the Transformer as a discretization of a structured integro-differential equation. Within this formulation, the self-attention mechanism emerges naturally as a non-local integral operator, and layer normalization is characterized as a projection to a time-dependent constraint. This operator-theoretic and variational perspective offers a unified and interpretable foundation for understanding the architecture's core components, including attention, feedforward layers, and normalization. Our approach extends beyond previous theoretical analyses by embedding the entire Transformer operation in continuous domains for both token indices and feature dimensions. This leads to a principled and flexible framework that not only deepens theoretical insight but also offers new directions for architecture design, analysis, and control-based interpretations. This new interpretation provides a step toward bridging the gap between deep learning architectures and continuous mathematical modeling, and contributes a foundational perspective to the ongoing development of interpretable and theoretically grounded neural network models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 数学理论 神经网络架构
相关文章