cs.AI updates on arXiv.org 10月07日
模型与数据集规模联合优化原则
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文揭示了模型和数据集规模联合优化中,输出层算子范数作为唯一不变量,并探讨了学习率/批大小与数据集规模的关系,为大规模LLM训练提供实践指导。

arXiv:2510.03871v1 Announce Type: cross Abstract: Despite recent progress in optimal hyperparameter transfer under model and dataset scaling, no unifying explanatory principle has been established. Using the Scion optimizer, we discover that joint optimal scaling across model and dataset sizes is governed by a single invariant: the operator norm of the output layer. Across models with up to 1.3B parameters trained on up to 138B tokens, the optimal learning rate/batch size pair $(\eta^{\ast}, B^{\ast})$ consistently has the same operator norm value - a phenomenon we term norm transfer. This constant norm condition is necessary but not sufficient: while for each dataset size, multiple $(\eta, B)$ reach the optimal norm, only a unique $(\eta^{\ast}, B^{\ast})$ achieves the best loss. As a sufficient condition, we provide the first measurement of $(\eta^{\ast}, B^{\ast})$ scaling with dataset size for Scion, and find that the scaling rules are consistent with those of the Adam optimizer. Tuning per-layer-group learning rates also improves model performance, with the output layer being the most sensitive and hidden layers benefiting from lower learning rates. We provide practical insights on norm-guided optimal scaling and release our Distributed Scion (Disco) implementation with logs from over two thousand runs to support research on LLM training dynamics at scale.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型优化 数据集规模 学习率调整 LLM训练
相关文章