cs.AI updates on arXiv.org 10月07日 12:15
半监督深度学习在胸腔积液CT扫描中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究开发了一种半监督深度学习框架,用于胸腔积液的CT扫描分割和量化,通过对比实验验证了该框架在分割性能上的优越性。

arXiv:2510.03856v1 Announce Type: cross Abstract: Background: Pleural Effusions (PE) is a common finding in many different clinical conditions, but accurately measuring their volume from CT scans is challenging. Purpose: To improve PE segmentation and quantification for enhanced clinical management, we have developed and trained a semi-supervised deep learning framework on contrast-enhanced CT volumes. Materials and Methods: This retrospective study collected CT Pulmonary Angiogram (CTPA) data from internal and external datasets. A subset of 100 cases was manually annotated for model training, while the remaining cases were used for testing and validation. A novel semi-supervised deep learning framework, Teacher-Teaching Assistant-Student (TTAS), was developed and used to enable efficient training in non-segmented examinations. Segmentation performance was compared to that of state-of-the-art models. Results: 100 patients (mean age, 72 years, 28 [standard deviation]; 55 men) were included in the study. The TTAS model demonstrated superior segmentation performance compared to state-of-the-art models, achieving a mean Dice score of 0.82 (95% CI, 0.79 - 0.84) versus 0.73 for nnU-Net (p < 0.0001, Student's T test). Additionally, TTAS exhibited a four-fold lower mean Absolute Volume Difference (AbVD) of 6.49 mL (95% CI, 4.80 - 8.20) compared to nnU-Net's AbVD of 23.16 mL (p < 0.0001). Conclusion: The developed TTAS framework offered superior PE segmentation, aiding accurate volume determination from CT scans.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

胸腔积液 CT扫描 深度学习 分割 量化
相关文章