cs.AI updates on arXiv.org 10月07日 12:15
预印本库安全审计:揭示潜在风险
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文首次对预印本库进行大规模安全审计,分析超过1.2TB的arXiv提交数据,揭示敏感信息泄露风险,并提出解决方案。

arXiv:2510.03761v1 Announce Type: cross Abstract: The widespread use of preprint repositories such as arXiv has accelerated the communication of scientific results but also introduced overlooked security risks. Beyond PDFs, these platforms provide unrestricted access to original source materials, including LaTeX sources, auxiliary code, figures, and embedded comments. In the absence of sanitization, submissions may disclose sensitive information that adversaries can harvest using open-source intelligence. In this work, we present the first large-scale security audit of preprint archives, analyzing more than 1.2 TB of source data from 100,000 arXiv submissions. We introduce LaTeXpOsEd, a four-stage framework that integrates pattern matching, logical filtering, traditional harvesting techniques, and large language models (LLMs) to uncover hidden disclosures within non-referenced files and LaTeX comments. To evaluate LLMs' secret-detection capabilities, we introduce LLMSec-DB, a benchmark on which we tested 25 state-of-the-art models. Our analysis uncovered thousands of PII leaks, GPS-tagged EXIF files, publicly available Google Drive and Dropbox folders, editable private SharePoint links, exposed GitHub and Google credentials, and cloud API keys. We also uncovered confidential author communications, internal disagreements, and conference submission credentials, exposing information that poses serious reputational risks to both researchers and institutions. We urge the research community and repository operators to take immediate action to close these hidden security gaps. To support open science, we release all scripts and methods from this study but withhold sensitive findings that could be misused, in line with ethical principles. The source code and related material are available at the project website https://github.com/LaTeXpOsEd

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

预印本库 安全审计 信息泄露 LLM 开放科学
相关文章