cs.AI updates on arXiv.org 10月07日 12:15
部分反馈下公平性审计算法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究在部分反馈下对分类器公平性的审计问题,引入新型成本模型以更准确地反映现实成本,提出两种审计设置下的算法,并在实际数据集上验证了算法的有效性。

arXiv:2510.03734v1 Announce Type: cross Abstract: We study the problem of auditing the fairness of a given classifier under partial feedback, where true labels are available only for positively classified individuals, (e.g., loan repayment outcomes are observed only for approved applicants). We introduce a novel cost model for acquiring additional labeled data, designed to more accurately reflect real-world costs such as credit assessment, loan processing, and potential defaults. Our goal is to find optimal fairness audit algorithms that are more cost-effective than random exploration and natural baselines. In our work, we consider two audit settings: a black-box model with no assumptions on the data distribution, and a mixture model, where features and true labels follow a mixture of exponential family distributions. In the black-box setting, we propose a near-optimal auditing algorithm under mild assumptions and show that a natural baseline can be strictly suboptimal. In the mixture model setting, we design a novel algorithm that achieves significantly lower audit cost than the black-box case. Our approach leverages prior work on learning from truncated samples and maximum-a-posteriori oracles, and extends known results on spherical Gaussian mixtures to handle exponential family mixtures, which may be of independent interest. Moreover, our algorithms apply to popular fairness metrics including demographic parity, equal opportunity, and equalized odds. Empirically, we demonstrate strong performance of our algorithms on real-world fair classification datasets like Adult Income and Law School, consistently outperforming natural baselines by around 50% in terms of audit cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

公平性审计 分类器 部分反馈 成本模型 算法
相关文章