cs.AI updates on arXiv.org 10月07日
MonitorVLM:基于视觉语言的矿场安全监控框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MonitorVLM,一种从监控视频流中检测安全违规行为的视觉语言框架,通过三个关键创新显著提升矿场安全监控效果。

arXiv:2510.03666v1 Announce Type: cross Abstract: Industrial accidents, particularly in high-risk domains such as surface and underground mining, are frequently caused by unsafe worker behaviors. Traditional manual inspection remains labor-intensive, error-prone, and insufficient for large-scale, dynamic environments, highlighting the urgent need for intelligent and automated safety monitoring. In this paper, we present MonitorVLM, a novel vision--language framework designed to detect safety violations directly from surveillance video streams. MonitorVLM introduces three key innovations: (1) a domain-specific violation dataset comprising 9,000 vision--question--answer (VQA) samples across 40 high-frequency mining regulations, enriched with augmentation and auxiliary detection cues; (2) a clause filter (CF) module that dynamically selects the Top-$K$ most relevant clauses, reducing inference latency by 13.56\% while maintaining accuracy; and (3) a behavior magnifier (BM) module that enhances worker regions to improve fine-grained action recognition, yielding additional gains of 3.45% in precision and 8.62% in recall. Experimental results demonstrate that MonitorVLM significantly outperforms baseline vision--language models, achieving improvements of 22.01% in precision, 34.22\% in recall, and 28.37% in F1 score over the 72B unfine-tuned baseline. A lightweight web-based interface further integrates MonitorVLM into practical workflows, enabling automatic violation reporting with video timestamping. This study highlights the potential of multimodal large models to enhance occupational safety monitoring in mining and beyond.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言模型 矿场安全监控 安全违规检测
相关文章