cs.AI updates on arXiv.org 10月07日
基于蚁群行为的窄环境多机器人协同
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于虚拟信息素的S-MADRL框架,以解决窄环境中多机器人协同的难题,通过课程学习克服现有算法的局限性,实现高效的协同工作。

arXiv:2510.03592v1 Announce Type: cross Abstract: We address the challenge of coordinating multiple robots in narrow and confined environments, where congestion and interference often hinder collective task performance. Drawing inspiration from insect colonies, which achieve robust coordination through stigmergy -- modifying and interpreting environmental traces -- we propose a Stigmergic Multi-Agent Deep Reinforcement Learning (S-MADRL) framework that leverages virtual pheromones to model local and social interactions, enabling decentralized emergent coordination without explicit communication. To overcome the convergence and scalability limitations of existing algorithms such as MADQN, MADDPG, and MAPPO, we leverage curriculum learning, which decomposes complex tasks into progressively harder sub-problems. Simulation results show that our framework achieves the most effective coordination of up to eight agents, where robots self-organize into asymmetric workload distributions that reduce congestion and modulate group performance. This emergent behavior, analogous to strategies observed in nature, demonstrates a scalable solution for decentralized multi-agent coordination in crowded environments with communication constraints.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多机器人协同 窄环境 深度强化学习 蚁群行为 S-MADRL
相关文章