cs.AI updates on arXiv.org 10月07日
深度学习揭示MJO可预测性来源
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文利用深度学习研究MJO可预测性来源,通过深度卷积神经网络预测MJO指数,发现大尺度模式是MJO预测的主要来源,并支持MJO的多尺度观点。

arXiv:2510.03582v1 Announce Type: cross Abstract: The Madden-Julian oscillation (MJO) is a planetary-scale, intraseasonal tropical rainfall phenomenon crucial for global weather and climate; however, its dynamics and predictability remain poorly understood. Here, we leverage deep learning (DL) to investigate the sources of MJO predictability, motivated by a central difference in MJO theories: which spatial scales are essential for driving the MJO? We first develop a deep convolutional neural network (DCNN) to forecast the MJO indices (RMM and ROMI). Our model predicts RMM and ROMI up to 21 and 33 days, respectively, achieving skills comparable to leading subseasonal-to-seasonal models such as NCEP. To identify the spatial scales most relevant for MJO forecasting, we conduct spectral analysis of the latent feature space and find that large-scale patterns dominate the learned signals. Additional experiments show that models using only large-scale signals as the input have the same skills as those using all the scales, supporting the large-scale view of the MJO. Meanwhile, we find that small-scale signals remain informative: surprisingly, models using only small-scale input can still produce skillful forecasts up to 1-2 weeks ahead. We show that this is achieved by reconstructing the large-scale envelope of the small-scale activities, which aligns with the multi-scale view of the MJO. Altogether, our findings support that large-scale patterns--whether directly included or reconstructed--may be the primary source of MJO predictability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Madden-Julian振荡 深度学习 可预测性 大尺度模式 多尺度
相关文章