cs.AI updates on arXiv.org 10月07日
RNN+GNN电力故障诊断模型对比研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将GraphSAGE和Graph Attention网络应用于RNN+GNN管道模型,对比了多种GNN架构在电力系统故障诊断中的表现,发现RGATv2模型具有优越的泛化能力。

arXiv:2510.03571v1 Announce Type: cross Abstract: Fault detection in power distribution grids is critical for ensuring system reliability and preventing costly outages. Moreover, fault detection methodologies should remain robust to evolving grid topologies caused by factors such as reconfigurations, equipment failures, and Distributed Energy Resource (DER) integration. Current data-driven state-of-the-art methods use Recurrent Neural Networks (RNNs) for temporal modeling and Graph Neural Networks (GNNs) for spatial learning, in an RNN+GNN pipeline setting (RGNN in short). Specifically, for power system fault diagnosis, Graph Convolutional Networks (GCNs) have been adopted. Yet, various more advanced GNN architectures have been proposed and adopted in domains outside of power systems. In this paper, we set out to systematically and consistently benchmark various GNN architectures in an RNN+GNN pipeline model. Specifically, to the best of our knowledge, we are the first to (i) propose to use GraphSAGE and Graph Attention (GAT, GATv2) in an RGNN for fault diagnosis, and (ii) provide a comprehensive benchmark against earlier proposed RGNN solutions (RGCN) as well as pure RNN models (especially Gated Recurrent Unit (GRU)), particularly (iii) exploring their generalization potential for deployment in different settings than those used for training them. Our experimental results on the IEEE 123-node distribution network show that RGATv2 has superior generalization capabilities, maintaining high performance with an F1-score reduction of $\sim$12% across different topology settings. In contrast, pure RNN models largely fail, experiencing an F1-score reduction of up to $\sim$60%, while other RGNN variants also exhibit significant performance degradation, i.e., up to $\sim$25% lower F1-scores.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

电力系统 故障诊断 RNN+GNN GraphSAGE Graph Attention
相关文章