cs.AI updates on arXiv.org 10月07日 12:15
IMMFM:改进序列数据生成模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Interpolative Multi-Marginal Flow Matching (IMMFM)的框架,用于解决序列数据生成中的稀疏采样和高维轨迹问题,通过优化连续随机动力学和扩散系数,实现更精确的预测和下游任务。

arXiv:2510.03569v1 Announce Type: cross Abstract: Generative models for sequential data often struggle with sparsely sampled and high-dimensional trajectories, typically reducing the learning of dynamics to pairwise transitions. We propose \textit{Interpolative Multi-Marginal Flow Matching} (IMMFM), a framework that learns continuous stochastic dynamics jointly consistent with multiple observed time points. IMMFM employs a piecewise-quadratic interpolation path as a smooth target for flow matching and jointly optimizes drift and a data-driven diffusion coefficient, supported by a theoretical condition for stable learning. This design captures intrinsic stochasticity, handles irregular sparse sampling, and yields subject-specific trajectories. Experiments on synthetic benchmarks and real-world longitudinal neuroimaging datasets show that IMMFM outperforms existing methods in both forecasting accuracy and further downstream tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

序列数据生成 IMMFM 稀疏采样 高维轨迹 预测
相关文章