cs.AI updates on arXiv.org 10月07日
AI视频会议身份泄露防御研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于姿态表达潜变量身份泄露防御方法,通过分析潜变量中的生物识别信息,实现视频会议中身份信息的实时保护。

arXiv:2510.03548v1 Announce Type: cross Abstract: AI-based talking-head videoconferencing systems reduce bandwidth by sending a compact pose-expression latent and re-synthesizing RGB at the receiver, but this latent can be puppeteered, letting an attacker hijack a victim's likeness in real time. Because every frame is synthetic, deepfake and synthetic video detectors fail outright. To address this security problem, we exploit a key observation: the pose-expression latent inherently contains biometric information of the driving identity. Therefore, we introduce the first biometric leakage defense without ever looking at the reconstructed RGB video: a pose-conditioned, large-margin contrastive encoder that isolates persistent identity cues inside the transmitted latent while cancelling transient pose and expression. A simple cosine test on this disentangled embedding flags illicit identity swaps as the video is rendered. Our experiments on multiple talking-head generation models show that our method consistently outperforms existing puppeteering defenses, operates in real-time, and shows strong generalization to out-of-distribution scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视频会议 身份泄露 生物识别 防御技术 AI
相关文章