cs.AI updates on arXiv.org 10月07日 12:15
Platonic Transformer:高效等变Transformer架构
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Platonic Transformer,通过定义相对于柏拉图固体对称群参考框架的注意力,实现等变性和连续平移的结合,同时保持标准Transformer的架构和计算成本。

arXiv:2510.03511v1 Announce Type: cross Abstract: While widespread, Transformers lack inductive biases for geometric symmetries common in science and computer vision. Existing equivariant methods often sacrifice the efficiency and flexibility that make Transformers so effective through complex, computationally intensive designs. We introduce the Platonic Transformer to resolve this trade-off. By defining attention relative to reference frames from the Platonic solid symmetry groups, our method induces a principled weight-sharing scheme. This enables combined equivariance to continuous translations and Platonic symmetries, while preserving the exact architecture and computational cost of a standard Transformer. Furthermore, we show that this attention is formally equivalent to a dynamic group convolution, which reveals that the model learns adaptive geometric filters and enables a highly scalable, linear-time convolutional variant. Across diverse benchmarks in computer vision (CIFAR-10), 3D point clouds (ScanObjectNN), and molecular property prediction (QM9, OMol25), the Platonic Transformer achieves competitive performance by leveraging these geometric constraints at no additional cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer 柏拉图固体对称群 等变性 计算机视觉
相关文章