cs.AI updates on arXiv.org 10月07日
大型分布式系统异常检测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对大型分布式系统异常检测的统一框架(RADF),采用mSelect技术自动选择算法和调整超参数,实现实时异常检测,并通过实验证明其在多个公开数据集上的性能优于现有模型。

arXiv:2510.03486v1 Announce Type: cross Abstract: Detecting anomalies in large, distributed systems presents several challenges. The first challenge arises from the sheer volume of data that needs to be processed. Flagging anomalies in a high-throughput environment calls for a careful consideration of both algorithm and system design. The second challenge comes from the heterogeneity of time-series datasets that leverage such a system in production. In practice, anomaly detection systems are rarely deployed for a single use case. Typically, there are several metrics to monitor, often across several domains (e.g. engineering, business and operations). A one-size-fits-all approach rarely works, so these systems need to be fine-tuned for every application - this is often done manually. The third challenge comes from the fact that determining the root-cause of anomalies in such settings is akin to finding a needle in a haystack. Identifying (in real time) a time-series dataset that is associated causally with the anomalous time-series data is a very difficult problem. In this paper, we describe a unified framework that addresses these challenges. Reasoning based Anomaly Detection Framework (RADF) is designed to perform real time anomaly detection on very large datasets. This framework employs a novel technique (mSelect) that automates the process of algorithm selection and hyper-parameter tuning for each use case. Finally, it incorporates a post-detection capability that allows for faster triaging and root-cause determination. Our extensive experiments demonstrate that RADF, powered by mSelect, surpasses state-of-the-art anomaly detection models in AUC performance for 5 out of 9 public benchmarking datasets. RADF achieved an AUC of over 0.85 for 7 out of 9 datasets, a distinction unmatched by any other state-of-the-art model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

异常检测 分布式系统 数据驱动
相关文章